

Comparison of Deep Learning and Shape Modelling for Automatic CT-based Liver Segmentation

Grzegorz Chlebus¹, Hans Meine¹, Itaru Endo², Andrea Schenk¹

¹Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany ²Yokohama City University Graduate School of Medicine, Yokohama, Japan

Introduction

Liver segmentation is required for planning of numerous medical procedures. Automatic liver segmentation, which is challenging due to liver's varying appearance, would allow for a speed-up and reproducibility of the planning process. We compared two automatic liver segmentation methods employing fully convolutional neural networks (FCNN) and statistical shape models (SSM).

Material and Methods

Data

219 CT scans

Reference liver segmentations were created semi-automatically by qualified medical staff using live-wire-based algorithm [1].

Statistical Shape Model

- Point correspondences established with the MDL algorithm [2]
- Landmark distribution refinement [3]
- Multi-scale segmentation pipeline
- Activate Shape Model and Deformable Model search modes [4]

Figure 1: Visualization of the statistical shape model and forces attracting the model to the liver boundary.

Convolutional Neural Network

- 2D CNN trained with axial slices resampled to 2 mm
- U-net architecture with 4 resolution levels [5]
- Receptive field of 99 voxels
- 7 781 826 trainable parameters

Figure 2: U-net architecture with four resolution levels. The numbers on the top of layers are corresponding to the channel count.

Evaluation and Results

We evaluated both methods on 40 CT volumes. Three cases were excluded from the evaluation, where the SSM-based approach failed.

Performance measures

Relative volume error

Figure 3: Relative volume error of the FCNN- and SSM-based methods.

- Elapsed time
 - FCNN 3±1s
 - SSM 39±8s

Figure 4: Example segmentations produced by FCNN (orange) and SSM (white) compared with reference (green).

Figure 5: Cases where the SSM-based approach failed to segment the liver: polycystic (left) and resected (right) case.

Conclusions

- Both FCNN- and SSM-based methods compute liver volumes with an acceptable accuracy.
- The FCNN-based method is significantly faster and more robust than the SSM-based approach.

References

- A. Schenk et al. "Efficient Semiautomatic Segmentation of 3D Objects in Medical Images. "In Proc. of MICCAI (2000).
 - R.H. Davies et al. "3D Statistical Shape Models Using Direct Optimisation of Description Length." European conference on computer vision (2002).
- T. Heimann at al. "Optimal Landmark Distributions for Statistical Shape Model Construction." In Proc. SPIE 6144, Medical Imaging 2006: Image Processing (2006).

 T. Heimann et al. "A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation." In Proc. of Information Processing in Medical Imaging (2007).
- [5] O. Ronneberger et al. "U-net: Convolutional Networks for Biomedical Image Segmentation." In Proc. of MICCAI (2015).