# Comparison of Deep Learning and Shape Modeling for Automatic CTbased Liver Segmentation

Grzegorz Chlebus, Hans Meine, Itaru Endo, Andrea Schenk

### Introduction

Many liver interventions require an organ segmentation for volumetry and procedure planning [1]. The liver's varying appearance in CT images makes this organ very time consuming for manual delineation and challenging for automatic segmentation approaches. Automatic methods are desired, since they allow for a speed-up and reproducibility of the planning process. We investigated two automatic segmentation algorithms based on fully convolutional neural networks (FCN) and statistical shape models (SSM).

### **Materials & Methods**

<u>Data</u> We used 219 abdominal contrast-enhanced CT datasets from Yokohama City University Medical Center. Each liver was manually delineated in a semi-automatic fashion by a qualified medical staff using an established algorithm [2]. The data was divided into nonoverlapping groups for training (147), method optimization (32), and testing (40). <u>FCNN-Based Method</u> We trained a FCN based on the U-net architecture [3] with four resolution levels using axial slices resampled to a 2 mm isotropic voxel size [4].

<u>SSM-Based Method</u> The SSM was built using the MDL algorithm [5] for point correspondence establishment. The SSM-based segmentation process consists of several steps with varying scale and the search modes [6]. For the appearance model, we trained a random forest classifier using profiles extracted from liver boundaries.

<u>Evaluation</u> We compared both methods on 40 CT volumes using the relative volume error and the elapsed time for evaluation.

# Results

The relative volume error was  $3,8\% \pm 1,7\%$  and  $5,9\% \pm 6,8\%$  and the elapsed time was  $3 \pm 1$ s and  $39 \pm 8$ s for the FCNN- and SSM-based method, respectively. We had to exclude three cases from the evaluation, where the SSM-based approach failed to segment the liver completely due to the organ' abnormal appearance (polycystic and resected cases). For significance tests we used the Wilcoxon signed-rank test (p=0.001).

# Conclusion

Both investigated methods compute liver volumes with acceptable accuracy [7]. The FCN-based method is more robust and runs significantly faster than the SSM-based algorithm.



Figure 1 Relative volume difference for the FCN- (blue) and SSM-based (orange) methods.

#### References

- 1 Lim M.C., et al. "CT volumetry of the liver: where does it stand in clinical practice?" Clinical Radiology Journal (2014).
- 2 Schenk A, Prause G, Peitgen H.O. "Efficient semiautomatic segmentation of 3D pbjects in medical images." In Proc. of MICCAI (2000).
- 3 Ronneberger O., Fischer P., Brox T. "U-net: convolutional networks for biomedical image segmentation." In Proc. of MICCAI (2015).
- 4 Chlebus G., Meine H., Moltz J.H., Schenk A. "Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering." www.arxiv.org/abs/1706.00842 (2017).
- 5 Davies R.H., Twining C.J, Cootes T.F., Waterton J.C., Taylor C.J. "3D statistical shape models using direct optimisation of description length." European conference on computer vision (2002).
- 6 Heimann T., Münzing S., Meinzer H.P., Wolf I. "A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation." In Proc. of Information Processing in Medical Imaging: 20th International Conference (2007).
- 7 Nakayama Y., et al. "Automated hepatic volumetry for living related liver transplantation at multisection CT." Radiology Journal (2006).