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Datasets

m LTS
131 CTs:
105 - training
15 - validation
11 - testing
~0.8 mm in-plane resolution
~1.5 mm slice thickness
W Liver surgery planning
179 CTs all used for training

~0.6 mm in plane-resolution
~0.8 mm slice thickness
Livers segmented by radiological experts
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Liver Segmentation
Data and Preprocessing

® Two training datasets
LiTS
Liver surgery planning

W Preprocessing
Rescaling raw GV to HU
Resampling to 2 mm isotropic voxel size
Padding with -1000 HU
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FCN General Info

®m Convolution block
Dropout p=0.5 in the upscaling path
ReLU activation function

Batch normalization
®m Softmax as the final layer
® Training

Dice loss function
Adam optimizer
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Liver Segmentation
Network Architecture and Training

B 2D U-net [1] with 4 resolution levels

INPUT -)|-b|

128 64 2

= wp| OUTPUT

& 128 256 128 1
HH HH
256 256 wh conv 313
l-»--»- —_— E--»--»- -
512 4 voscale 2
B Training --b_-b_ wh skip conmection
‘oonlel
w  Patch size: 148x148 (axial) or 148x44

w Batchsize 15
w107 learning rate
w  ~30k iterations/ ~43 epochs/~19 h

[1) Ronneberger O. et al, "U- Net: Convolutional Networks for Biomedial Image Segmentation”, 2015.
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Liver Segmentation
Postprocessing

B Biggest connected components of the majority vote mask
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Liver Segmentation
Postprocessing

W Biggest connected components of the majority vote mask

transversal
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Liver Segmentation
Postprocessing

® Biggest connected components of the majority vote mask

»
transversal coronal
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Liver Segmentation
Postprocessing

® Biggest connected components of the majority vote mask

-ee

transversal coronal sagittal
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Liver Segmentation
Postprocessing

® Biggest connected components of the majority vote mask

-ee

transversal coronal saglttal
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Tumor Segmentation
Data and Preprocessing

® LiTS dataset
W Preprocessing
Padding with -1000 HU
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Tumor Segmentation
Data and Preprocessing

® LiTS dataset
W Preprocessing
Padding with -1000 HU

B Masked loss
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Tumor Segmentation
Network Architecture and Training

B Modified 2D U-net with 4 resolution levels

1 64 128 64 2
INPUT -pl.;
4

i OuTPUT

128 256 128 1
My Iy
¥ 256 512 256 1 o com 23
-l — - [P
’ 512 2 3 fwcoms:ride-z
B - N - wh skip connection
s s " conv 1x1
®  Training
= Patch size: 252x252 (axial) = Only tumor patches
= Batchsize6 w  ~230k iterations/ ~32

® 5% |earningrate epochs/~3gh

= Random flipping
Medical Knowledge Through Research

~ Fraunhofer
MEVIS
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Network Architecture and Training
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Tumor Segmentation
Output of the FCN
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Tumor Segmentation
Output of the FCN

m False Positives (FPs) Problem
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Tumor Segmentation
FPs Filtering

® Train another classifier to detect
FPs
® 46 features based on:
CT intensity
Shape
DTF of the liver mask
® Random Forest (RF) accuracy ~90%
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Tumor Segmentation
FPs Filtering

B Train another classifier to detect
FPs

Per Case Recall

101 o
® 46 features based on:
CT intensity o3|
Shape g .
DTF of the liver mask g os 2
& /
® Random Forest (RF) accuracy ~90% & /"
i 04 / g
& o
= ) -~
B RF vs No-RF: 02 .
Recall ‘
o.o-',o{ . . ® .:,';’"3’
‘ 0.0 0.2 04 0.6 08 1.0
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Tumor Segmentation
FPs Filtering

B Train another classifier to detect

FPS ‘ Per Case Precision
10 » : . . . g
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Tumor Segmentation
FPs Filtering

B Train another classifier to detect
FPs

1.0

Per Case Dice

® 46 features based on: /
CT intensity 03| .ot e
o * g o B "
Shape g e e, ‘.{,,'
DTF of the liver mask e o &
g ’ o
® Random Forest (RF) accuracy ~90% &
; 04 .: ) ’r’
s P
® RF vs No-RF: o2l » 7
Recall ‘ e o
Precision ' 00| o o S
0.0 0.2 04 0.6 08 1.0

Dice 1
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Tumor Segmentation
FPs Filtering Examples

Without RF-Postprocessing

Medical Knowledge Through Research

Z Fraunhofer

MEVIS

\



Tumor Segmentation
FPs Filtering Examples

With RF-Postprocessing
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Tumor Segmentation
FPs Filtering Examples

Without RF-Postprocessing
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Tumor Segmentation
FPs Filtering Examples

With RF-Postprocessing
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Tumor Segmentation
FPs Filtering with Tumor Refinement

B Use tumor candidates to initialize stroke-based semi-automatic
segmentation tool [2]

[2) Moltz J.H. et al., "Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans”,
2009.
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Tumor Segmentation
FPs Filtering with Tumor Refinement

Stroke application
® Segmentation refinement

B Additional features for RF classifier
of the refined tumors
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Tumor Segmentation
FPs Filtering with Tumor Refinement

Stroke application

Per Case Recall

B Segmentation refinement Lo T
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of the refined tumors o8] O )
. " "‘?"’
L J ‘o B
m Stroke vs No-Stroke: gosi o o
\‘ﬂ.‘ Y ’ .
s ’
Recall § 5 . T
;—‘ 0.4 . -
s * o/
0.2+ . “,
oo-'}/ . . .
‘ 0.0 0.2 04 0.6 08 1.0
With Stroke
Medical Knowledge Through Research
~ Fraunhofer

MEVIS



Tumor Segmentation

FPs Filtering with Tumor Refinement

Stroke application

Per Case Precision
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Tumor Segmentation
FPs Filtering with Tumor Refinement

Stroke application

Per Case Dice

® Segmentation refinement o3 e
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2.5D FCN Architecture

Idea:

B Add more context information
® 1t LiTS round winner used 2.5D [3]

[3) Han X. *Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method.” 2017.
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[3) Han X. *Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method.” 2017.
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[3) Han X. *Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method.” 2017.
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[3) Han X. *Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method.” 2017.
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Problematic Cases

® Found tumor bigger than the reference
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Problematic Cases

® Liver mask misses tumors located near organ’s border
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Problematic Cases

® Big tumors are not fully segmented
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Problematic Cases

® Obvious(?) tumors are completely missed
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LiTS Results

® Liver segmentation
Dice per case: 0.96
Relative volume difference: -0.4%
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LiTS Results

® Liver segmentation

©  Dice per case: 0.96

oK

© Relative volume difference: -0.4%
® Tumor segmentation
© Dice per case: 0.68
©  Precision at > 0% overlap: 0.72
= Recall at > 0% overlap: 0.57
® Tumor burden
“  RMSE: 0.02
© Max: 0.07
® Inference time per CT volume: ~2 min on GTX 1080
© Liver segmentation: ~43 s
“  Tumor segmentation: ~52s
“  FPsfiltering: ~19s
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LiTS Results

® Liver segmentation

Dice per case: 0.96

Relative volume difference: -0.4%

® Tumor segmentation

Dice per case: 0.68

Precision at > 0% overlap: 0.72 F@ﬁﬁh@ﬁ' WO 1%
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RMSE: 0.02
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Liver segmentation: ~43 s
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Technical Setup

® Data loading and preprocessing

“ MeVisLab i

® Deep Learning Toolkits ‘4'}‘
N\
% RedLeaf \a/

“ Theano

® Evaluation

% Challengr ‘ : eng
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Conclusions

We proposed a fully automatic method for liver and liver lesion
segmentation based on FCNs

False positive tumors were filtered with a high accuracy using image
intensity and shape based features

Providing more context to the network (2.5D) decreased the
segmentation quality

Further work is required to make tumor segmentation clinically
applicable
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Outlook

m Different architectures
“ Adversarial networks
© Recurrent networks

® Other training strategies
% Curriculum learning
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Outlook

m Different architectures
“ Adversarial networks
© Recurrent networks

® Other training strategies
% Curriculum learning

Thank you for your attention ©

Questions?
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