AUTOMATIC LIVER AND TUMOR SEGMENTATION IN LATE-PHASE MRI USING FULLY CONVOLUTIONAL NEURAL NETWORKS

Grzegorz Chlebus, Hans Meine, Nasreddin Abolmaali and Andrea Schenk

Background

- Liver & tumor segmentation is required for many liver interventions
- Radioembolisation
 - Basis for tumor load computation
 - Required for dose computation
- Manual or semi-automatic segmentation
 - Tedious and time consuming
 - inter-observer variability

- Well studied problem for CT
 - LiTS challenge 2017 (3rd place out of 28 teams) [1]

[1] http://lits-challenge.com/

Goal

- Develop automatic DL-based algorithm for:
 - Liver segmentation
 - Liver tumor segmentation
- Comparison with:
 - Reference annotations
 - Clinical routine segmentations
 - Results reported in the literature
- Extends our previous work [1]

[1] Schenk A et al., "Deep learning for liver segmentation and volumetry in late phase MRI", ECR 2018.

Data

- 90 patients with primary liver cancer and/or liver metastases
 - 76 scheduled for radioembolisation
- DCE-MRI
 - Acquired at Städtisches Klinikum Dresden, Germany
 - 3T Discovery MRI, GE Healthcare Systems, USA
 - Contrast agent Gd-EOB-EDPA (Primovist®, Bayer Healthcare)
 - LAVA sequence

Manual segmentations

Reference

- Very precise and time consuming
- Done by radiological assistants and reviewed by a radiologist
- Used for training of deep learning models

Routine

- According to clinical routine standards
- Defined by one radiologist and two residents
- Contouring and interpolation software [1]

[1] Weiler F et al., "Building blocks for clinical research in adaptive radiotherapy", CURAC 2015. Medical Knowledge Through Research

Segmentation Pipelines

Axial

Segmentation Pipelines

OrthoMean [1]

[1] Prasoon A et al., "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network", MICCAI 2013.

Neural network architecture

- U-net like [1]
- 4 resolution levels
- 9M trainable parameters
- Receptive field 94x94 voxels

- 3x3 convolution kernels
- Short skip connections [2]
- Batch normalization
- Spatial dropout
- [1] Ronneberger O et al., "Convolutional networks for biomedical image segmentation", MICCAI 2015.
- [2] Drozdzal M et al., "The importance of skip connections in biomedical image segmentation", 2016.

Data preprocessing

- Normalization
 - 2nd and 98th percentiles mapped to [0, 1] range
- Resampling to a 2mm isotropic voxel size
- Training data augmentation
 - Random rotations
 - Random intensity shifts
- Training/validation/evaluation split
 - 57/5/28 liver
 - 60/5/20 liver tumor

Results: Training Data Size

Liver segmentation quality

Examples: Liver

White – Reference
Solid black – Axial
Dashed black – OrthoMean

Examples: Liver tumors

White - Reference
Solid black - Axial
Dashed black - OrthoMean

Results

Axial vs OrthoMean

	DICE	RVE[%]	t[s]	
$\begin{array}{c} \textbf{Liver} \\ Axial \\ OrthoMean \end{array}$	0.946 ± 0.018 0.951 ± 0.018	4.20 ± 3.34 4.20 ± 3.65	2.05 ± 0.34 7.32 ± 0.36	
$\begin{array}{c} \mathbf{Tumor} \\ Axial \\ OrthoMean \end{array}$	0.627 ± 0.241 0.647 ± 0.210	48.9 ± 53.3 35.9 ± 28.2	1.73 ± 0.73 7.63 ± 2.23	

Results: Comparison with routine segmentations of the liver

- Manual routine segmentations: 10 ± 4 min
- OrthoMean: 7.3 ± 0.4s

Comparison with literature

		Dataset						
	DICE	#	Sequence	Scanner	$\begin{array}{c} {\rm Resolution} \\ {\rm [mm]} \end{array}$	Slice thickness [mm]		
Liver								
$Axial,\ Ortho Mean$	$0.946 \pm 0.018, \\ 0.951 \pm 0.018$	90	LAVA	3T Discovery(GE)	0.74-1.76	2.0-5.0		
Christ et al. [6]	0.870	31	n/a	1.5T Avanto(Siemens)	n/a	5.0		
Suzuki et al. [7]	$0.936 \pm 0.017^*$	23	LAVA, THRIVE	1.5T Signa HDx/HDxt(GE), 1.5T Achieva(Philips)	1.17-1.72	4.0-5.0		
Le et al. [8]	0.910 ± 0.028	10	VIBE	1.5T Avanto(Siemens)	1.18 - 1.40	3.5 - 4.0		
Bereciartua et al. [9]	0.902 ± 0.086	18	VIBE	1.5T Avanto(Siemens)	n/a	n/a		
Huynh et al. [10]	0.911 ± 0.019	27	VIBE, LAVA, THRIVE	1.5T Signa HDx/HDxt(GE), 1.5T Achieva(Philips), 1.5T Avanto(Siemens)	1.17-1.72	3.5-5.0		
Ivashchenko et al. [11]	n/a	5	mDIXON	n/a	1.00	1.5		
Tumor								
$Axial,\ Ortho Mean$	$\begin{array}{c} 0.627 \pm 0.241, \\ 0.647 \pm 0.210 \end{array}$	85	LAVA	3T Discovery(GE)	0.74-1.76	2.0-5.0		
Christ et al. [6]	0.697	31	n/a	1.5T Avanto(Siemens)	n/a	5.0		

^{*} Average for CT and MRI dataset.

Direct comparison not possible due to differences in datasets

Summary

- Liver segmentation quality of our segmentation approaches was comparable to that of manual routine segmentations
- Tumor segmentation is a more difficult task than liver segmentation
- Acquiring more training data has a positive impact on the model performance
- Direct comparisons with other methods remain difficult due to lack of publicly available data
- Future work
 - More extensive validation
 - Evaluation of 3D architectures

Thank you for your attention © Questions?

What does the neural network see?

