DEEP LEARNING ALGORITHMS FOR LIVER AND TUMOR SEGMENTATION

Grzegorz Chlebus, Hans Meine

Deep learning is a major thing

Before 2013

We failed to design image analysis algorithms that perform better than humans.

Deep learning is a major thing

2013 - now

We found that deep learning works well for image understanding tasks thanks to faster computers and better training algorithms.

Deep neural network

DL algorithms can surpass expert performance

JAMA | Original Investigation

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

Babak Ehteshami Bejnordi, MS; Mitko Veta, PhD; Paul Johannes van Diest, MD, PhD; Bram van Ginneken, PhD; Nico Karssemeijer, PhD; Geert Litjens, PhD; Jeroen A. W. M. van der Laak, PhD; and the CAMELYON16 Consortium

IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

OBJECTIVE Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.

DESIGN, SETTING, AND PARTICIPANTS Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

- Editorial page 2184
- Related articles page 2211 and page 2250
- Supplemental content
- → CME Quiz at jamanetwork.com/learning and CME Questions page 2252

DL algorithms can surpass expert performance

Conclusions

In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting slides without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

What medical tasks can be solved by DL?

- **Detection** Is it present or not?
- Classification What type of thing is it?
- Segmentation How big is it, what shape does it have?
- Prediction What are the chances that this patient will get cancer in X years from now?
- **Recommendation** Which therapy option would be the best for this patient?

Automatic liver and tumor segmentation Motivation

- Automate/improve the planning process of liver interventions
 - SIRT planning
 - Basis for tumor load computation
 - Required for dose computation
- Manual or semi-automatic segmentation
 - Tedious and time consuming
 - Inter-observer variability

CT Data

- LiTS Challenge dataset
 - 131 CT scans with reference segmentations of liver and tumors
 - ~0.8 mm in-plane resolution
 - ~1.5 mm slice thickness
- Liver surgery planning dataset
 - 179 CT scans with reference segmentations of liver
 - ~0.6 mm in plane-resolution
 - ~0.8 mm slice thickness

MRI Data

- SIRTOP dataset
 - 90 DCE-MRI scans with reference liver and tumor segmentations
 - Acquired at Städtisches Klinikum Dresden, Germany
 - 0.74-1.76 mm in-plane resolution
 - 2-5 mm slice thickness

Städtisches Klinikum Fraunhofer

Dresden Fraunhofer

Segmentation Pipeline

OrthoMean [1]

[1] Prasoon A et al., "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network", MICCAI 2013.

Results: CT Liver Segmentation

- 40 test cases
- Automatic method: 79 points according to MICCAI score [1]
- Trained human performance (no radiological expert): 75 points

[1] Heimann T et al., "Comparison and Evaluation of Methods for Liver Segmentation from CT Datasets", IEEE TMI 2009.

Results: CT Liver Tumor Segmentation

- 30 test cases
- Automatic Method
 - 0.58 Dice per case
 - 0.69 Dice per tumor
- MTRA performance
 - 0.7 Dice per case
 - 0.72 Dice per tumor

Results: CT Liver Tumor Segmentation

		Lesion										
#	User	Entries	Date of Last Entry	Dice per case ▲	Dice global	VOE 📥	RVD 🛦	ASSD ▲	MSD ▲	RMSD ▲	Precision at 50% overlap ▲	Recall at 50% overlap
1	leHealth	20	08/04/17	0.7020 (1)	0.7940 (5)	0.394 (11)	5.921 (18)	1.189 (12)	6.682 (5)	1.726 (8)	0.156 (14)	0.437 (3)
2	hchen	12	08/04/17	0.6860 (2)	0.8290 (1)	0.356 (3)	5.164 (17)	1.073 (5)	6.055 (1)	1.562 (2)	0.409 (4)	0.408 (4)
3	hans.meine	7	07/30/17	0.6760	0.7960	0.383	0.464	1.143	7.322	1.728	0.496 (2)	0.397

- State-of-the-art results
- 3rd place at MICCA round of the LiTS challenge
 - 28 teams

Results: MRI Liver Segmentation

- 28 test cases
- Automatic method: 0.95 Dice [1]
- Human performance: 0.94-0.95 Dice
 - 1 radiologist
 - 2 residents

[1] Chlebus G et al., "Automatic Liver and Tumor Segmentation in Late-Phase MRI Using Fully Convolutional Neural Networks", CURAC 2018.

Results: MRI Liver Segmentation

- 28 test cases
- Automatic method: 0.95 Dice [1]
- Human performance: 0.94-0.95 Dice
 - 1 radiologist
 - 2 residents

[1] Chlebus G et al., "Automatic Liver and Tumor Segmentation in Late-Phase MRI Using Fully Convolutional Neural Networks", CURAC 2018.

Results: Training Data Size

Liver segmentation quality in MRI

Inter-observer variability

- Routine vs. corrected liver segmentations
- Ca 35% of slices were corrected (3 observers)
- Average 5 min per case correction time

Results: MRI Liver Tumor Segmentation

- 20 test cases
- Automatic method: 0.65 Dice [1]
- Human performance: 0.90-0.93 Dice [2]

[1] Chlebus G et al., "Automatic Liver and Tumor Segmentation in Late-Phase MRI Using Fully Convolutional Neural Networks", CURAC 2018.

[2] Budjan J et al., "Semi-automatic Volumetric Measurement of Treatment Response in Hepatocellular Carcinoma after TACE", 2016.

Summary

- Deep learning algorithms are very successful at image analysis tasks
- Deep learning methods can help radiologist to perform their work faster and more accurate
- Liver segmentation quality of our automatic method was comparable to that of human segmentations
- Tumor segmentation is a more difficult task than liver segmentation
- Acquiring more training data has a positive impact on the model performance
- Future work
 - More extensive validation

Thank you for your attention © Questions?

Automatic liver and tumor segmentation Motivation

Reduce inter-observer variability

- RECIST 1.1 study by Bellomi et al. [1]
 - 100 radiologists
 - 3 cases

Conclusion

Age and expertise of the radiologist remain the most critical factors.

Fig. 2. Percentage of raters for each RECIST classification response by case report

[1] Bellomi M. et al. "Evaluation of inter-observer variability according to RECIST 1.1 and its influence on response classification in CT measurement of liver metastases" 2017.

What does the neural network see?

Training

- 1. Training images with reference labels REF
- 2. Initialize neural network NN parameters randomly
- 3. **DO**
- 4. Apply NN to a batch of training images → *OUTPUT*
- 5. Compute the difference between *OUTPUT* and $REF \rightarrow LOSS$
- 6. Compute *LOSS* derivatives w.r.t. NN parameters → *GRADIENTS*
- 7. Apply *GRADIENTS* to update NN parameters
- 8. UNTIL convergence

Neural network architecture

- U-net like [1]
- 4 resolution levels
- 9M trainable parameters
- Receptive field 94x94 voxels

- 3x3 convolution kernels
- Short skip connections [2]
- Batch normalization
- Spatial dropout
- [1] Ronneberger O et al., "Convolutional networks for biomedical image segmentation", MICCAI 2015.
- [2] Drozdzal M et al., "The importance of skip connections in biomedical image segmentation", 2016.

